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We show that a purely dielectric structure made of alternating layers of deep subwavelength thicknesses
exhibits novel transmission effects which completely contradict conventional effective medium theories
exactly in the regime in which those theories are commonly used. We study waves incident at the vicinity of
the effective medium’s critical angle for total internal reflection and show that the transmission through the
multilayer structure depends strongly on nanoscale variations even at layer thicknesses smaller than λ=50.
In such deep subwavelength structures, we demonstrate dramatic changes in the transmission for variations
in properties such as periodicity, order of the layers, and their parity. In addition to its conceptual
importance, such sensitivity has important potential applications in sensing and switching.
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In electromagnetism, homogenization is the conceptual
process of replacing a complex structure of subwavelength
sized components with an “effective medium” with uni-
form properties. It is a fundamentally important notion
which can be traced back to the earliest days of electro-
magnetic theory, to the Lorentz-Lorenz and Maxwell-
Garnet effective medium models [1–3]. More modern
approaches to homogenization calculate the effective
parameters in greater precision and for a variety of
geometries, either analytically or by extraction from a
numerical or physical experiment [4]. Importantly, the
effective medium parameters can be very different from
those ordinarily found in nature. The effective medium of
properly designed metamaterials can exhibit a huge bire-
fringence [5–7], a negative refractive index [8–12], or a
near-zero electric permittivity [13,14].
While effective medium theories have become ubiqui-

tous, the homogenization approach becomes particularly
intricate and fails altogether in periodic metal-dielectric
structures involving wave vectors significantly larger than
the vacuum wave vector [15,16], especially in the presence
of gain [17] or involving strong interaction with surface
waves [18–22]. In such cases, the transmission of metal-
dielectric multilayer systems can be sensitive to details
(e.g., the permittivity of a single layer) which are typically
averaged out in the effective medium description [22]. On
the other hand, all-dielectric systems, which fundamentally
do not support extremely large wave vectors or surface
wave resonances, are believed to tightly obey homogeni-
zation. Consider the case of a multilayer structure com-
posed of layers with permittivity εa; εb and thicknesses
da; db ≪ λ, where λ is the vacuum wavelength [23].
Naturally, we assume that all layer thicknesses are much
larger than the molecular dimensions (or lattice constant in
crystalline media). For this case, the basic predictions of the
homogenization approach are as follows.

(1) When da;b → 0, the permittivity of the entire multi-
layer layer approaches the effective medium value, which
under TE illumination is the simple average ε̄ ¼ (ðεada þ
εbdbÞ=ðdb þ dbÞ) [23]. As a consequence, the subwave-
length structural features are smoothed out and it is hard to
tell apart the two similar structures that differ only on a
subwavelength scale [3].
(2) The behavior of the structure is independent of the

number of layers and their order. Only the total size of the
structure matters. Adding 1–2 additional layers should,
therefore, not have any noticeable effect on the
transmission.
(3) The effective permittivity and permeability does not

depend on nearby materials that border the multilayer
structure. One can analyze the transmission of (and
reflection from) the multilayer structure by consistently
replacing it with an effective medium (which can be
isotropic or anisotropic), regardless of what materials
border the structure.
Here, we examine a simple stratified dielectric structure

that defies all these basic predictions of effective medium
theory and displays boundary effects that cannot be under-
stood from the conventional effective medium perspective.
Specifically, we show that even when the layers are 0.02λ
thin, impedance matching with the exterior medium [from
which the electromagnetic (EM) waves enter or leave the
multilayer structure] is not always possible. The phase of
the observed reflection depends on the properties of the last
layer, and as a result, the transmission of the entire structure
can change significantly (of order unity) due to the addition
of a single 10 nm thin layer or when the order of the layers
is reversed. In addition, we examine the extreme sensitivity
of this system to nanometric variations in layer thickness
and discuss its potential applications in sensing and
switching. Finally, we consider the nature of propagation
and power conservation in such multilayers and show that it
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is fundamentally different from the effective model pre-
diction, even in the d=λ → 0 limit.
Consider the dielectric multilayer stack displayed in

Fig. 1, made of N pairs of dielectric layers with a
permittivity of εa or εb and a thickness of da or db,
respectively. The structure is surrounded by homogeneous
mediums εin;out. Assuming εin > ε̄, we can define the
angle θc ¼ arcsinð ffiffiffiffiffiffiffiffiffiffi

ε̄=εin
p Þ, which is the critical angle

for total internal reflection for a wave incident from εin
into ε̄.
The effects described in this Letter are reasonably robust

—they persist over an angular range of ∼5% below θc,
assuming the difference between εa; εb is order unity.
Observation of the effects should be possible over a
reasonably broad bandwidth, and appear for both TE
and TM polarization. However, in order to simplify the
presentation, we restrict the discussion below to the case
where the effects are most easily observed: illumination by
a TE-polarized CWwave, incident at precisely θ ¼ θc, with
a beam wide enough to justify its approximation to a
plane wave. Under these conditions, the wave is an
evanescent wave in the lower permittivity (εb) layer and
a propagating wave in the higher permittivity (εa) layer, and

the magnitude of the wave vector in both layers is equal:

kz;a ¼ ikz;b, where kz;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εjk20 − k2x
q

for j ¼ a; b and

k0 ¼ 2π=λ.
As a concrete example, we take λ ¼ 500 nm,

εa ¼ 5; εb ¼ 1, and da ¼ db ¼ d ¼ 10 nm (i.e., 0.02λ),
which is deeply subwavelength, and consider the case
where εin ¼ εout ¼ 4. We also assume constant layer
thicknesses (no disorder), but the main results remain valid
and observable even in the presence of weak disorder
(< 5% width variation). The results presented in this Letter
are calculated using the transfer-matrix formalism, as
described in detail in Ref. [24]. Importantly, we emphasize
that this formalism is exact, accounting for all the forward
and backward reflections in the structure [28]. To obtain the
effective permittivity εeff for such a structure, we consider
the dispersion relation of a multilayer structure [29] and
assume deeply subwavelength layers (we neglect a term
which is small when kzd ≪ 1) to get

cos½kz;effðda þ dbÞ� ¼ cosðkz;adaÞ coshðikz;bdbÞ: ð1Þ

From this relation we can extract εeff ¼ ε̄þ ΔðdÞ, where Δ
is a small correction term (on the order of 5 × 10−3 for our
choice of parameters), and almost independent of θ. At
normal incidence, this correction term is practically neg-
ligible and one can safely approximate εeff ¼ ε̄, as expected
from the effective medium approach. However, for inci-
dence near the critical angle, the z component of the wave
vector is kz;eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðε̄þ ΔÞk20 − k2x
p

¼ k0
ffiffiffiffi

Δ
p

and the cor-
rection term Δ becomes crucial. We calculate the trans-
mission of the multilayer structure and find that small
variations in the layer width (and accordingly small
changes in Δ) translate to significant transmission modu-
lations. As Fig. 2(a) shows very clearly, the transmission
through the multilayer structure for incidence at the critical
angle is strongly affected by minute (1 nm) variations in the
layer thickness. Hence, it is easy to tell apart two structures
identical in all aspects other than their layer thicknesses.

FIG. 1 (color online). Schematics of a multilayer structure
(N ¼ 3 periods), surrounded by homogeneous materials with
permittivities εin and εout. A plane wave is incident at angle θ, at
the proximity of the critical angle for total internal reflection.

FIG. 2 (color online). Transmission as a function of structure width (¼ Nd) for several structures. (a) For layer thicknesses d ¼ 9, 10,
11 nm, εin ¼ εout ¼ 4. (b) For d ¼ 10 nm and εin ¼ 4, εout ¼ εeff with a regular layer order (εa followed by εb) or reversed (εb followed
by εa). The prediction of the effective medium (EM) theory is marked by the yellow horizontal lines. All plots in (a) and (b), apart from
the yellow line, are calculated via transfer-matrix formalism.
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Evidently, the sensitivity observed in Fig. 2(a) contradicts
the intuitive notion (prediction 1, above) that the trans-
mission through a dielectric stack can be changed only by
thickness variations on the optical wavelength scale.
To further demonstrate the breakdown of the effective

medium description of the multilayer stack, we consider the
case where the output permittivity εout is equal to εeff while
εin ¼ 4, as before. We compare the transmission through
two structures that are identical except that the order of
layers is reversed in one with respect to the other. Clearly,
effective medium theory should yield the same trans-
mission for both structures, because εeff is not affected
by the order of the layers. However, this seemingly trivial
variation of the structure completely changes the trans-
mission through this deep subwavelength multilayer stack.
Because εout ¼ εeff , the interface of the multilayer with εout
should be impedance matched in the effective medium
description and the boundary between the multilayer.
Moreover the exterior εout should, from the effective
medium perspective, be no boundary at all. Therefore, in
the effective medium model, we expect to have a constant
transmission through the multilayer—independent of the
number of layers or their order (note that this transmission
is not zero, since θ is the critical angle relative to ε̄ and we
already found that εeff > ε̄). However, in reality, the
transmission through the multilayer is not constant. As
the red and black lines in Fig. 2(b) show, the transmission
strongly depends on both the number and the order of the
layers. For example, when “regular ordering” is at a
transmission resonance (transmission is 0.75), “reverse
ordering” is off resonance (transmission is 0.1).
These results highlight the crucial role of the layer

adjacent to the impedance matched exterior (εout). The
effective medium model can be phenomenologically
extended to account for these effects, by treating the stack
as a slab with homogeneous permittivity εeff but assuming a
nontrivial reflection coefficient of r ¼ r0eiϕ at the imped-
ance matched boundary. The value of this coefficient

cannot be found through the logic of effective medium
concepts. Rather, it is extracted from Fig. 2(b), which is the
result of the transfer-matrix calculation. For our choice of
parameters r0 ¼ 0.76 (instead of r0 ¼ 0, the effective
medium prediction), but the phase ϕ depends on the
identity of the last layer. It is ϕ ¼ −1.2 rad when the
structure terminates with an εb layer (regular layer order)
and þ1.2 rad when it terminates with an εa layer (reversed
order). Changing the order of the layers effectively changes
the identity of the last layer and drives the system from high
to low transmission. A simpler way to change the identity
of the last layer is to simply add a single εa layer to the
structure while keeping the layer order fixed. Doing so
results in a plot almost identical to Fig. 2(b), with the same
large jump in transmission, even though the two structures
only differ by one additional 10 nm thick layer.
This remarkable sensitivity to subwavelength variations

in the structure can lead to many potential applications.
First, as shown in Fig. 2(a), it can be used to measure the
layer thickness d. More importantly, it can also be used to
measure the properties of a single extremely thin layer. To
highlight this, Fig. 3(b) shows the dependence of the total
transmission of the stack as a function of the width of the
terminating layer, which is a strong dependence when
εout ¼ εeff but insignificant when εout ¼ 4. In addition to
its potential application to sensing, extreme sensitivity
is attractive for electro-optical manipulation of light—
miniscule electro-optical modifications of light (for exam-
ple, by a weak control beam) can induce large and
significant transmission variations. The critical angle θc
in this scheme does not change and the multilayer remains
virtually loss-free.
Before proceeding further, it is important to note that this

boundary effect does not appear just at the singular case
where εout ¼ εeff precisely; rather, it occurs in a range of
parameters around that point. To show this, consider the
case where the exterior permittivity εout is varied contin-
uously. For every value of εout, we can deduce the reflection
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FIG. 3 (color online). (a) Amplitude of the reflection and transmission coefficients from the output boundary of the multilayer stack
versus εout − ε̄ deduced from the transfer-matrix calculation (dashed line) compared against the values found from naive effective
medium theory (solid line). The results from both methods coincide for εout − ε̄ > 0.1, but clearly when the permittivity difference is
small, effective medium yields erroneous results. (b) Transmission as a function of the width of the last layer in the structure, for two
values of εout (red and black lines). Near impedance matching, the transmission is extremely sensitive to nanometric changes in the width
of the last layer. Here, N ¼ 34 and the layers are in reversed order (εb before εa).
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and transmission coefficients from the transfer-matrix
calculation and compare it against the value obtained from
the effective medium approach. Figure 3(a) shows the
magnitude of the coefficients obtained from both
approaches for various values of εout − ε̄. The effective
medium result is reasonably accurate when εout − ε̄ > 0.1,
but fails for a range of εout permittivities closer to ε̄. Also,
we can see from this figure that there is no value of εout for
which the reflection disappears (r0 > 0.6 always). It is
important to note that for a structure with thinner layers (or
illumination with larger wavelengths) this boundary effect
would appear on a narrower range of εout permittivities, and
that in the λ=d → ∞ limit, the existence regime of the
effects vanishes. Nevertheless, as we have shown here,
it is a significant effect at a broad range of λ=d ratios
in which the effective medium approach is otherwise
justified.
So far, we have considered only the macroscopic proper-

ties of the multilayer, such as the transmission of power, but
close examination of the field reveals that even when the
effective model is seemingly accurate, it fails to predict the
actual distribution of the field. Since the layers we consider
are extremely thin, the wave does not accumulate phase (or
decay) considerably across one layer. However, it can
accumulate a considerable phase on reflection (the Goos-
Hanchen phase shift) because the Fresnel reflection coef-
ficients are rab ¼ −rba ¼ (ðkz;a − kz;bÞ=ðkz;a þ kz;bÞ),
with jrabj ¼ 1 and incidence exactly at θc yields
kz;a ¼ −ikz;b, and r ¼ �i. Therefore, the way waves
accumulate phase inside the structure (through Fresnel
transmission and reflection) is fundamentally different
from the “usual” case, where phase is accumulated through
propagation only.
A magnitude unity reflection coefficient also implies that

the reflected components of the field are strongly coupled
and that we must account for all the orders of reflection
to get a full physical picture. This is done implicitly in

the transfer-matrix formalism, in which we decompose the
field into its forward propagating component Eþ and the
backward propagating component E−. When kz is imagi-
nary, Eþ decays in the forward direction and E− decays in
the backward direction. Using the same transfer-matrix
formalism, we can also calculate the field distribution
inside the structure and Fig. 4(a) shows that the EtotðzÞ
resultant of this calculation is almost identical in the
effective medium and layered descriptions. However, the
components Eþ and E− behave completely differently: In
the effective model, in which the structure is essentially a
Fabry-Perot etalon, Eþ and E− have constant amplitudes
and counterpropagating phases, whereas our analysis
shows that their amplitudes depend on z with the same
period as EtotðzÞ, as shown in Fig. 4(a).
The phase of the two components also deviates from the

effective medium prediction [Fig. 4(c)]. To understand
why, we turn to observe the way energy is conserved in this
system. Inside the higher permittivity (εa) layers (where
kz ∈ R), the power carried in the z direction is simply the
difference between the power carried by the forward and
backward components Pa ¼ ðεa=2Þ½E2þ − E2−�. Therefore,
energy conservation implies that inside the εa layers
[Fig. 4(b)] Eþ is always slightly larger then E− so that
Pa is conserved [30].
The situation is different in the lower permittivity (εb)

layers. The power carried in the z direction in these layers is
Pb ¼ εbEþE− sinðϕÞ, where ϕ is the relative phase
between Eþ and E− (for the same reason a single
evanescent wave cannot carry power) [30]. Since Eþ
and E− are z dependent, we can expect that the relative
phase ϕ will also change accordingly, so that Pb is z
independent in the εb layers. As shown in Fig. 4(c), the
simulations corroborate this prediction: the peaks of sinðϕÞ
correspond to points where Eþ and E− are small [the nodes
in Fig. 4(a)], and sinðϕÞ approaches 0 when Eþ and E− are
large. Calculating Pb explicitly shows that it is indeed

FIG. 4 (color online). (a) Amplitude of Eþ; E−, the forward and backward propagating components, and ETM ¼ Eþ þ E−, the total
field, as found through the transfer-matrix calculation exactly on the transmission resonance (N ¼ 518) and the field EEM found from
the effective model. The total field found in both methods agrees closely, but the components do not. (b) A magnified portion of (a),
showing the field amplitude inside the layers. (c) The sine of the relative phase between Eþ and E−. The peaks of (c) correspond to the
minima in (a).
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constant in the εb layers. It is equal to Pa found in the
higher permittivity layers.
In conclusion, we analyzed the transmission of light

through a dielectric stack of alternating layers with thick-
nesses much smaller than the optical wavelength. We
showed that, despite its simplicity, this structure displays
intricate and counterintuitive effects at the vicinity of the
critical angle for total internal reflection. Crucially, the
waves in such a structure are alternatingly evanescent and
propagating, while the phase is mostly accumulated via
multiple Fresnel reflections. We showed that transmission
through the multilayer can change dramatically when the
layer thickness is varied by as little as 1 nm (relative to
λ ¼ 500 nm wavelength). Furthermore, we have shown
that this type of structure cannot be impedance matched in
the usual sense. That is, reflection always occurs at the
output boundary, regardless of the permittivity of this
exterior (even when the exterior is impedance matched
with the effective permittivity of the structure). Since the
phase of this reflection depends on the identity of the
boundary layer, varying the order of the layers or adding a
single 10 nm layer can change the transmission dramati-
cally. All of these results constitute a clear breakdown of
the effective medium description of our structure.
This work raises a variety of intriguing questions that are

left for future research. For example, what happens in the
intermediate regime, where the layer thickness is d ∼ λ=10?
From an applications-oriented perspective, our preliminary
results indicate that such “intermediate” structures would
be advantageous, because they display similar effects, but
at the same time they are much more resistant to disorder
and loss than those discussed here. Perhaps even more
interesting is the issue of a disordered multilayer structure
of subwavelength thicknesses. Would Anderson localiza-
tion effects [31] be considerably altered in such a system?
Answers to this question cannot rely on known asymptotic
analyses of the Anderson localization, because the phases
of electromagnetic waves, accumulated in these structures,
arise from Fresnel reflections rather than propagation
effects. Finally, many of the ideas presented here (with
TE polarized EMwaves) are general and carry over to other
types of wave systems, such as quantum physics or
acoustics.
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